MODELING COUNT DATA WITH OVER-DISPERSION USING GENERALIZED POISSON REGRESSION: A CASE STUDY OF LOW BIRTH WEIGHT IN INDONESIA

نویسندگان

چکیده

Poisson regression is commonly used in modeling count data various research fields. An essential assumption must be met when using regression, which that the of response has mean and variance equal, namely equi-dispersion. This often unmet because many for greater than mean, called over-dispersion. If model contains over-dispersion, then will produced an invalid can under-estimate standard errors misleading inference parameters. Therefore, approach needed to overcome over-dispersion problem regression. The generalized handle study aims obtain factors affecting low birth weight Indonesia 2021. result shows based on were: poverty rate, percentage households with access appropriate sanitation, pregnant women at risk chronic energy deficiency receiving additional food, who received blood-boosting tablets, antenatal care.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of Generalized Poisson Regression Model and Negative Binomial Regression Model in case of Over-dispersion Count Data

This paper represents the comparison between Negative Binomial Regression model and Generalized Poisson Regression model for over-dispersion count data. For this comparison, we used BDHS 2007 data in where the response variable is the total children ever born which is a count data. When the response variable is count, then Poisson Regression Model as a Generalized Linear Model is widely and pop...

متن کامل

Predicting Factors of INSURE Failure in Low Birth Weight Neonates with RDS; A Logistic Regression Model

Background:Respiratory Distress syndrome is the most common respiratory disease in premature neonate and the most important cause of death among them. We aimed to investigate factors to predict successful or failure of INSURE method as a therapeutic method of RDS.Methods:In a cohort study,45 neonates with diagnosed RDS and birth weight lower than 1500g were included and they underwent INSURE fo...

متن کامل

Bayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model

In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

Generalized estimating equations for longitudinal generalized Poisson count data with regression effects on the mean and dispersion level

Generalized estimating equations (GEE) fit parameters based on sums of weighted residuals, which may be applied for example to the Poisson distribution. We discuss Generalized Poisson (GP) response data. This distribution has a more flexible variance function than the Poisson distribution and has an additional dispersion parameter. To fit this parameter, second level estimating equations based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Statistika Universitas Muhammadiyah Semarang

سال: 2023

ISSN: ['2338-3216', '2528-1070']

DOI: https://doi.org/10.26714/jsunimus.11.1.2023.45-60